Explore le traitement du signal graphique appliqué aux réseaux cérébraux, en mettant l'accent sur la relation entre la fonction cérébrale et la structure en utilisant des méthodes telles que le graphique Fourier Transform et l'indice de découplage structural.
Explore l'intégration de la structure et de la fonction cérébrales à l'aide des techniques de traitement des signaux graphiques, y compris l'IRM fonctionnelle et l'analyse du connectome structurel.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Explore les bases de la neuroimagerie, les échelles du réseau cérébral, la connectivité, l'histoire et la physique, soulignant l'importance de comprendre les données à différentes échelles.
S'oriente vers l'analyse de la dynamique cérébrale et des réseaux à l'aide de techniques de neuroimagerie avancées et de méthodes de traitement des signaux.
Couvre les bases des réseaux, en mettant l'accent sur les réseaux du cerveau, les percées historiques, les découvertes de petits mondes et de réseaux sans échelle, et l'importance du connectome humain.