Indépendance statistique et corrélation : Comprendre les fonctions de Gauss
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les concepts clés de l'analyse des composantes principales (APC) et ses applications pratiques dans la réduction de dimensionnalité des données et l'extraction des caractéristiques.
Explore la règle discriminatoire gaussienne pour la classification à l'aide de modèles de mélange gaussien et discute des limites de dessin et de la complexité du modèle.
Couvre l'algorithme Metropolis-Hastings et les approches basées sur les gradients pour biaiser les recherches vers des valeurs de vraisemblance plus élevées.
Explore lutilisation des modèles de mélange gaussien pour la transition du clustering à la classification, couvrant la classification binaire, lestimation des paramètres et le classificateur Bayes optimal.