Explore les modules du réseau cérébral et la structure communautaire, y compris le connectome fonctionnel modulaire naturel, la modularité du réseau et les algorithmes de détection communautaire.
Couvre l'analyse des fenêtres coulissantes, l'analyse des processus ponctuels et les modèles auto-régressifs dans la connectivité fonctionnelle dynamique.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Explore le traitement du signal graphique appliqué aux réseaux cérébraux, en mettant l'accent sur la relation entre la fonction cérébrale et la structure en utilisant des méthodes telles que le graphique Fourier Transform et l'indice de découplage structural.
Explore les bases de la neuroimagerie, couvrant l'observation du cerveau à différentes échelles et cartographie des réseaux du cerveau avec diverses techniques.
Discute des définitions et de l'évaluation des niveaux de conscience par le biais de neuroimagerie et de réseaux cérébraux, en mettant l'accent sur la connICA pour cartographier les traits fonctionnels du connectome.
Explore l'intégration de la structure et de la fonction cérébrales à l'aide des techniques de traitement des signaux graphiques, y compris l'IRM fonctionnelle et l'analyse du connectome structurel.