Explore la connectivité des nœuds cérébraux, le degré de nœud, la force, les réseaux aléatoires, les distributions de droit de l'énergie, et la complexité des réseaux réels.
Explore les chemins, la diffusion et la navigation dans les réseaux du cerveau, y compris des sujets comme l'algorithme de Dijkstra et l'efficacité du réseau.
Explore la centralité, les hubs, les vecteurs propres, les coefficients de regroupement, les réseaux de petits mondes, les défaillances des réseaux et la théorie de la percolation dans les réseaux du cerveau.
Explore la vue d'ensemble, la justification et les stratégies de la neuroscience de simulation, en mettant l'accent sur les défis de la reconstruction et de la simulation du cerveau.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Explore le degré de nœud et la force dans les neurosciences réseau, en discutant des réseaux aléatoires et réels et les défis d'adapter les lois de puissance aux données réelles.