In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
En mathématiques, le procédé d'algèbre linéaire de décomposition en valeurs singulières (ou SVD, de l'anglais singular value decomposition) d'une matrice est un outil important de factorisation des matrices rectangulaires réelles ou complexes. Ses applications s'étendent du traitement du signal aux statistiques, en passant par la météorologie. Le théorème spectral énonce qu'une matrice normale peut être diagonalisée par une base orthonormée de vecteurs propres.
En algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
Un fichier spécial (special file), ou fichier de périphérique (device file), est la manière dont certains systèmes d'exploitation permettent d'accéder à un périphérique — unité d'entrée-sortie (écran, imprimante, clavier, souris, modem...), unité de stockage (disque dur, clef USB, CD-ROM, DVD-ROM, disquette...). Pour l'utilisateur, le périphérique quel qu'il soit est vu de la même manière qu'un fichier ; par exemple, l'écriture sur un écran se fait de la même manière que l'écriture d'un fichier sur un disque dur.
L'analyse canonique des corrélations, parfois aussi nommé analyse des corrélations canoniques, (canonical-correlation analysis en anglais) permet de comparer deux groupes de variables quantitatives appliqués tous deux sur les mêmes individus. Le but de l'analyse canonique est de comparer ces deux groupes de variables pour savoir s'ils décrivent un même phénomène, auquel cas on pourra se passer d'un des deux groupes de variables. Un exemple parlant est celui des analyses médicales effectuées sur les mêmes échantillons par deux laboratoires différents.