Vectorisation en Python : calcul efficace avec Numpy
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les méthodes itératives pour résoudre les systèmes linéaires, y compris les méthodes Jacobi et Gauss-Seidel, la factorisation Cholesky et le gradient conjugué préconditionné.
Couvre les bases de l'analyse numérique et des méthodes de calcul utilisant Python, en se concentrant sur les algorithmes et les applications pratiques en mathématiques.
Introduit les bases de Numpy, une bibliothèque de calcul numérique en Python, couvrant les avantages, la disposition de la mémoire, les opérations et les fonctions d'algèbre linéaire.