Couvre la percolation des liaisons sur un réseau carré, en discutant des phases de percolation, du seuil critique, de la taille moyenne des grappes et des scénarios de points critiques.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Couvre la preuve du théorème ARV de Bourgain, en se concentrant sur lensemble fini de points dans un espace semi-métrique et lapplication de lalgorithme ARV pour trouver la coupe la plus clairsemée dans un graphique.
Explore la propagation de la croyance dans les modèles graphiques, les graphiques de facteurs, les exemples de verre de spin, les distributions de Boltzmann et les propriétés de coloration des graphiques.
Introduit des structures de données réseau, des modèles et des techniques d'analyse, mettant l'accent sur l'invariance de permutation et les réseaux Erdős-Rényi.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Explore la théorie des graphes dans la connectomique cérébrale, les applications d'IRM, la pertinence de l'analyse de réseau et les empreintes digitales individuelles.
Couvre les déclarations conditionnelles et la théorie des graphes, y compris les techniques de preuve et les concepts liés aux graphes, aux chemins, à la connectivité et aux protocoles de commérage.