Dynamique Moléculaire et Monte Carlo: Environnement Computationnel
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les simulations de dynamique moléculaire sous des contraintes holonomiques, en se concentrant sur l'intégration numérique et la formulation d'algorithmes.
Couvre les méthodes de calcul des systèmes moléculaires à température finie, en mettant l'accent sur l'échantillonnage stochastique et les simulations d'évolution du temps.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Couvre la théorie et les aspects pratiques des simulations de Monte Carlo en dynamique moléculaire, y compris les moyennes d'ensemble et l'algorithme Metropolis.
Explore l'analyse des mesures, la réconciliation des données et l'identification des paramètres dans les systèmes énergétiques, en soulignant l'importance de mesures et d'optimisations correctes.