Explorer les distributions d'échantillonnage, les propriétés des estimateurs et les mesures statistiques pour les applications de la science des données.
Explorer la densité de calcul des états et l'inférence bayésienne à l'aide d'un échantillonnage d'importance, montrant une variance inférieure et la parallélisation de la méthode proposée.
Couvre les méthodes Monte Carlo, la réduction de la variance et le contrôle optimal stochastique, explorant les techniques de simulation, l'efficacité et la dynamique d'investissement.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Introduit l'estimation bayésienne, qui couvre l'inférence classique par rapport à l'inférence bayésienne, les antécédents conjugués, les méthodes MCMC et des exemples pratiques comme l'estimation de la température et la modélisation de choix.