Explorer la densité de calcul des états et l'inférence bayésienne à l'aide d'un échantillonnage d'importance, montrant une variance inférieure et la parallélisation de la méthode proposée.
Déplacez-vous dans les courbes de repérage et d'apprentissage des connaissances bayésiennes, explorant la prédiction des connaissances des élèves au fil du temps et l'importance d'une mesure précise du rendement.
Explore les modèles de régression spatiale, abordant les défis d'autocorrélation spatiale et le concept de modèles de décalage spatial pour corriger les biais et améliorer la précision de l'inférence.
Explorer l'interprétation des modèles de régression logistique, l'estimation des paramètres et la comparaison des modèles à l'aide de tests de rapport de probabilité.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.
Couvre les concepts fondamentaux de probabilité et de statistiques, en se concentrant sur l'analyse des données, la représentation graphique et les applications pratiques.
Explore les arbres de décision, les ensembles, le CLT, l'inférence, l'apprentissage automatique, les méthodes de diagnostic, l'augmentation et l'estimation de la variance.