Couvre les mesures d'information telles que l'entropie, la divergence Kullback-Leibler et l'inégalité de traitement des données, ainsi que les noyaux de probabilité et les informations mutuelles.
Explore l'identité thermodynamique, la relation entropie-température et la définition de la pression, illustrant les principes clés avec des exemples pratiques.
Discute de l'entropie, de la compression des données et des techniques de codage Huffman, en mettant l'accent sur leurs applications pour optimiser les longueurs de mots de code et comprendre l'entropie conditionnelle.
Explore l'information mutuelle, quantifiant les relations entre les variables aléatoires et mesurant le gain d'information et la dépendance statistique.