Benchmarking intégratif : faire progresser les modèles de systèmes d'intelligence humaine
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les modèles de calcul du système visuel ventral, en se concentrant sur l'optimisation des réseaux pour les tâches réelles et la comparaison avec les données cérébrales.
Explore des modèles d'apprentissage automatique pour les neurosciences, en se concentrant sur la compréhension des fonctions cérébrales et la reconnaissance des objets centraux par le biais de réseaux neuronaux convolutifs.
Discute des défis et de l'avenir de l'informatique neuromorphe, en comparant les ordinateurs numériques et le matériel spécialisé, comme SpiNNaker et NEST, tout en explorant la plate-forme informatique neuromorphe du projet Human Brain.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Explore le contrôle du comportement chez les animaux et les robots, couvrant les perspectives historiques, l'activation des neurones, le modèle de Drosophila, les techniques avancées et l'organisation de mini-projets.
S'engage dans l'apprentissage continu des modèles de représentation après déploiement, soulignant les limites des réseaux neuronaux artificiels actuels.
Discute des défis liés à la construction de réseaux neuraux physiques, en mettant l'accent sur la profondeur, les connexions et la capacité de formation.