Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les vecteurs aléatoires, la densité de probabilité articulaire, les variables aléatoires indépendantes, les fonctions de deux variables aléatoires et les variables aléatoires gaussiennes.
Couvre les processus de Markov, les densités de transition et la distribution sous réserve d'information, en discutant de la classification des états et des distributions fixes.
Explore la dépendance dans les vecteurs aléatoires, couvrant la densité articulaire, l'indépendance conditionnelle, la covariance et les fonctions génératrices de moment.
Couvre les distributions conditionnelles et les corrélations dans les statistiques multivariées, y compris la variance partielle et la covariance, avec les applications aux distributions non normales.
Explore la dépendance, la corrélation et les attentes conditionnelles en matière de probabilité et de statistiques, en soulignant leur importance et leurs limites.