Couvre l'algorithme de Leighton-Rao pour trouver la coupe la plus clairsemée dans un graphique, en se concentrant sur ses étapes et ses fondements théoriques.
Explore le lemme de régularité Szemerédi, la régularité électronique dans les graphes bipartites, la structure des supergraphes et les techniques d'induction.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Explore la propagation de la croyance dans les modèles graphiques, les graphiques de facteurs, les exemples de verre de spin, les distributions de Boltzmann et les propriétés de coloration des graphiques.
Introduit des structures de données réseau, des modèles et des techniques d'analyse, mettant l'accent sur l'invariance de permutation et les réseaux Erdős-Rényi.