Couvre les vecteurs aléatoires, la densité de probabilité articulaire, les variables aléatoires indépendantes, les fonctions de deux variables aléatoires et les variables aléatoires gaussiennes.
Couvre les concepts fondamentaux de probabilité et de statistiques, y compris les résultats intéressants, le modèle standard, le traitement de l'image, les espaces de probabilité et les tests statistiques.
Discute des concepts statistiques clés, y compris les dangers d'échantillonnage, les inégalités et le théorème de la limite centrale, avec des exemples pratiques et des applications.
Couvre les propriétés et la construction des processus de Poisson à partir de variables aléatoires d'i.i.d. Exp(X), en soulignant l'importance du taux de processus et des distributions de temps de saut.