Représentations neuro-symboliques: Connaissances communes et Raisonnement
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les politiques interactives d'apprentissage à partir de sources de données non traditionnelles pour les systèmes autonomes, y compris les actions latentes en connaissance de langue et le cadre PLATO.
Explore les pratiques alchimiques, les cahiers de laboratoire et l'importance historique des livres de recettes pour documenter et diffuser les connaissances scientifiques.
Explore les ontologies populaires et les bases de connaissances telles que WordNet, WikiData, Google Knowledge Graph et Schema.org, ainsi que les ensembles de données ouvertes liées.
Discute de la conception en tant que producteur de connaissances, en mettant l'accent sur son rôle dans la reconstruction et la contextualisation de la réalité.
Explore les modèles de résolution de coréférence, les défis dans les échelles de notation, les techniques de raffinement des graphiques, les résultats de pointe et l'impact des transformateurs préentraînés.
Explore le raisonnement causal dans les soins de santé, les lignes directrices ML, les changements d'ensemble de données, l'impact des biais et l'apprentissage multimodal.