Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.
Introduit le cours sur les systèmes d'information, couvrant sa structure, ses objectifs et ses concepts fondamentaux essentiels à la compréhension de la gestion des données et de la prise de décision.
Introduit les marchés financiers, les séries chronologiques, les applications d'apprentissage automatique en finance et le traitement des langues naturelles.
En savoir plus sur l'apprentissage profond pour le traitement des langues naturelles, l'exploration de l'intégration des mots neuraux, des réseaux neuraux récurrents et de la modélisation des neurones avec les transformateurs.
Explore la recherche de documents, la classification, l'analyse des sentiments, les matrices TF-IDF, les méthodes de voisinage les plus proches, la factorisation matricielle, la régularisation, LDA, les vecteurs de mots contextualisés et BERT.
Couvre la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés tels que BERT.
Explore la gestion du texte, en se concentrant sur les matrices, les documents et les sujets, y compris les défis de la classification des documents et des modèles avancés comme BERT.