Explore l’apprentissage profond avec des images Instagram, comprend la perception des aliments, l’obésité et la santé mentale, et discute de l’impact des images des médias sociaux et des plateformes éphémères comme Snapchat.
Couvre les architectures de transformateurs avancées en apprentissage profond, en se concentrant sur les modèles Swin, HUBERT et Flamingo pour les applications multimodales.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore les techniques de délimitation, y compris la transformation de Hough, l'orientation du gradient et la détection de forme, en soulignant l'importance de combiner des techniques basées sur des graphiques et l'apprentissage automatique.
Explore l'évolution des systèmes d'image sociale, des modèles d'apprentissage en profondeur, des selfies et de la biométrie sur les plateformes en ligne.