Se penche sur le transfert de style photographique, montrant comment les algorithmes peuvent transformer les images pour imiter différents styles et améliorer les photos.
Couvre les techniques de récupération d'informations de forme 3D à partir d'images 2D à l'aide de modèles d'ombrage et d'approches modernes d'apprentissage profond.
Introduit des réseaux neuronaux convolutifs, couvrant les couches entièrement connectées, les convolutions, la mise en commun, les traductions PyTorch et des applications telles que l'estimation de pose à la main et l'estimation de tubalité.
Introduit des réseaux neuronaux convolutionnels (RCN) pour les véhicules autonomes, couvrant l'architecture, les applications et les techniques de régularisation.
Explore l'apprentissage autosupervisé pour les véhicules autonomes, en dérivant des étiquettes de données elles-mêmes et en discutant de ses applications et de ses défis.
Discute de l'analyse des textures dans les images, en se concentrant sur les propriétés statistiques et structurelles, les techniques de segmentation et les applications d'apprentissage automatique pour la classification des textures.