Couvre les méthodes de recherche de ligne de gradient et les techniques d'optimisation en mettant l'accent sur les conditions Wolfe et la définition positive.
Explore le rôle du calcul dans les mathématiques de données, en mettant l'accent sur les méthodes itératives, l'optimisation, les estimateurs et les principes d'ascendance.
Introduit les bases de l'algèbre linéaire, du calcul et de l'optimisation dans les espaces euclidien, en mettant l'accent sur la puissance de l'optimisation en tant qu'outil de modélisation.
Discute de la descente de gradient stochastique et de son application dans l'optimisation non convexe, en se concentrant sur les taux de convergence et les défis de l'apprentissage automatique.
Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.
Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Explore la méthode Extra-Gradient pour l'optimisation Primal-dual, couvrant les problèmes non convexes, les taux de convergence et les performances pratiques.