Explore les méthodes d'estimation du spectre paramétrique, y compris les spectres linéaires et lisses, et se penche sur l'analyse de la variabilité de la fréquence cardiaque.
Explore le traitement du signal neuronal pour les interfaces cerveau-ordinateur, y compris les techniques de décodage comme les filtres Kalman et le tri des pics.
Explore la prédiction linéaire, les filtres optimaux, les signaux aléatoires, la stationnarité, l'autocorrélation, la densité spectrale de puissance et la transformée de Fourier dans le traitement du signal.
Explore les fondamentaux du traitement des signaux, y compris les signaux de temps discrets, la factorisation spectrale et les processus stochastiques.
Met l'accent sur la mise en œuvre d'un générateur de fonctions carrées utilisant la technologie Speedgoat FPGA et les techniques de traitement du signal en temps réel.