Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les informations mutuelles pour quantifier la dépendance statistique entre les variables et déduire des distributions de probabilité à partir de données.
Explore l'information mutuelle dans les données biologiques, en mettant l'accent sur son rôle dans la quantification de la dépendance statistique et l'analyse des séquences protéiques.
Explore la dépendance, la corrélation et les attentes conditionnelles en matière de probabilité et de statistiques, en soulignant leur importance et leurs limites.
Explore le théorème de la limite centrale, la covariance, la corrélation, les variables aléatoires articulaires, les quantiles et la loi des grands nombres.
Couvre la théorie des probabilités, les distributions et l'estimation dans les statistiques, en mettant l'accent sur la précision, la précision et la résolution des mesures.
Couvre les concepts fondamentaux de la statistique, y compris la théorie de l'estimation, les distributions et la loi des grands nombres, avec des exemples pratiques.
Discute de l'estimation et de la propagation de l'incertitude dans les variables aléatoires et de l'importance de gérer l'incertitude dans l'analyse statistique.