Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Explore la régression non paramétrique pour les réseaux, couvrant l'analyse des données d'objets, les graphiques de réseaux, les distances extrinsèques et les projections pratiques.
Explore l'inférence des connaissances pour les graphiques, en discutant de la propagation des étiquettes, des objectifs d'optimisation et du comportement probabiliste.
Explore les distances sur les graphiques, les normes de coupe, les arbres de couverture, les modèles de blocs, les métriques, les normes et les ERGM dans l'analyse des données du réseau.