Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Couvre l'analyse en composantes principales pour la réduction dimensionnelle des données biologiques, en se concentrant sur la visualisation et l'identification des modèles.
Couvre une mission de travail sur les données de querelle et d'analyse à l'aide de la bibliothèque de pandas de Python pour les ensembles de données du monde réel.
Se penche sur la physialisation des données, l'expressivité, la visualisation féministe et l'équilibre entre l'exploration et l'explication de la visualisation des données.
Introduit le cours d'analyse des données appliquées à l'EPFL, couvrant un large éventail de sujets d'analyse des données et mettant l'accent sur l'apprentissage continu en sciences des données.
Explore les principes de visualisation des données, y compris la navigation des cartes, les histogrammes, les diagrammes de dispersion, les diagrammes de boîte et l'utilisation des couleurs.