Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la régression linéaire, la régression pondérée, la régression pondérée localement, la régression vectorielle de soutien, la manipulation du bruit et la cartographie oculaire à l'aide de SVR.
Couvre la descente du gradient stochastique, la régression linéaire, la régularisation, l'apprentissage supervisé et la nature itérative de la descente du gradient.
S'insère dans l'analyse de régression, en mettant l'accent sur le rôle des prédicteurs linéaires dans le rapprochement des résultats et en discutant des modèles linéaires généralisés et des techniques d'inférence causale.
Explore les fonctions de perte, la descente de gradient et l'impact de la taille des pas sur l'optimisation dans les modèles d'apprentissage automatique, en soulignant l'équilibre délicat requis pour une convergence efficace.
Explore le surajustement dans la régression polynomiale, en soulignant l'importance de la généralisation dans l'apprentissage automatique et les statistiques.
Couvre les bases de régression linéaire, en se concentrant sur la minimisation des erreurs en utilisant le principe des moindres carrés et comprend une table ANOVA et un exemple pratique dans R.