Explore les surfaces minimales, la courbure, l'opérateur Laplace-Beltrami, les solutions numériques, le lissage laplacien, le flux de diffusion et l'intégration du temps.
Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Explore les propriétés géométriques des paraboles et des hyperboloïdes en architecture, en mettant l'accent sur leurs implications de conception et leurs applications pratiques.
Déplacez-vous dans les principes géométriques de l'architecture gothique, en mettant l'accent sur les techniques de courbure de surface et de stéréotomie.
Explore la géométrie différentielle des surfaces paramétriques, couvrant l'espace tangent, la courbure normale, les courbures principales et les courbes asymptotiques.