Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Explore les conditions de chaîne dans la théorie des modules, en mettant l'accent sur les modules noéthériens et les séquences de stabilisation des sous-modules.
Explore les sous-représentations de la représentation régulière dans la théorie des groupes, en mettant l'accent sur les propriétés et l'isomorphisme entre les sous-représentations.