Modélisation des signaux neurobiologiques: Chaînes Markov
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'analyse des signaux EMG, les modèles de mélange, les modèles gaussiens et le tri des pics dans le traitement des signaux neuraux à l'aide de PCA.
Explore la modélisation des signaux neurobiologiques, en se concentrant sur les pics, la vitesse de tir, plusieurs neurones d'état, et l'estimation des paramètres.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Explore la modélisation générative basée sur les scores au moyen d'équations différentielles stochastiques, en mettant l'accent sur les modèles probabilistes d'appariement des scores et de diffusion.
Couvre les outils de traitement statistique des signaux pour les communications sans fil, y compris le spectre de diffusion, l'analyse spectrale, les communications à bande ultra large et l'analyse de la variabilité de la fréquence cardiaque.
Couvre un échantillonnage important pour une estimation Monte Carlo efficace des valeurs attendues en utilisant une nouvelle distribution pour réduire la variance.
Couvre le calcul et l'estimation dans la simulation stochastique, en se concentrant sur la génération de répliques iid et l'échantillonnage d'importance optimale.