Explore les chaînes de Markov et leurs applications dans des algorithmes, en se concentrant sur l'impatience des utilisateurs et la génération d'échantillons fidèles.
Couvre les principes fondamentaux de l'apprentissage profond, y compris les données, l'architecture et les considérations éthiques dans le déploiement de modèles.
Explore l'évaluation de la fiabilité, la maintenance préventive, la fiabilité, les modèles Markov, FMEA, FTA et l'intégrité de la sécurité logicielle dans l'automatisation industrielle.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.