Explore les modèles de signaux paramétriques, y compris les processus AR et les chaînes de Markov, couvrant la synthèse, l'analyse et les structures de corrélation.
Explore l'extension bayésienne de HMM pour la segmentation et la modélisation de l'action du robot, les limites des HMM classiques et la segmentation des données de capture de mouvement.
Explore l'ergonomie et la distribution stationnaire dans les chaînes Markov, en mettant l'accent sur les propriétés de convergence et les distributions uniques.
Explore la vraisemblance du Whittle déprécié pour les séries chronologiques et les données spatiales, en mettant l'accent sur l'adaptation de la densité spectrale au parodogramme pour de meilleures prédictions et une meilleure estimation des paramètres.