Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore Markov Chain Monte Carlo pour l'échantillonnage des distributions haute dimension et l'optimisation des fonctions à l'aide de l'algorithme Metropolis-Hastings.
Explore l'inférence causale, les graphiques dirigés et l'équité dans les algorithmes, en mettant l'accent sur l'indépendance conditionnelle et les implications des GAD.
Couvre la probabilité appliquée, les chaînes de Markov et les processus stochastiques, y compris les matrices de transition, les valeurs propres et les classes de communication.
Couvre les processus de Markov, les densités de transition et la distribution sous réserve d'information, en discutant de la classification des états et des distributions fixes.
Explore le concept de distribution stationnaire dans les chaînes de Markov, en discutant de ses propriétés et de ses implications, ainsi que des conditions d'une récurrence positive.