Couvre les méthodes de résolution d'équations non linéaires, y compris les méthodes de bisection et de Newton-Raphson, en mettant l'accent sur les critères de convergence et d'erreur.
Couvre le théorème du point fixe et la convergence de la méthode de Newton, en soulignant l'importance du choix de la fonction et du comportement de la dérivée pour une itération réussie.
Explore l'analyse de convergence de la méthode de Newton pour résoudre les équations non linéaires, en discutant des propriétés de convergence linéaire et quadratique.