Couvre les fonctions d'intégration sur les surfaces des graphes dans le calcul vectoriel, en mettant l'accent sur l'interprétation du théorème de divergence et des cas spéciaux de domaine entre deux graphes.
Explore les caractéristiques de la turbulence, les méthodes de simulation et les défis de modélisation, fournissant des lignes directrices pour le choix et la validation des modèles de turbulence.
Explore l'hypothèse de thermalisation d'état propre dans les systèmes quantiques, en mettant l'accent sur la théorie de la matrice aléatoire et le comportement des observables dans l'équilibre thermique.