Modélisation du rôle de l'hippocampe dans la navigation spatiale
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des concepts d'apprentissage profond pour les NLP, couvrant l'intégration de mots, les RNN et les Transformateurs, mettant l'accent sur l'auto-attention et l'attention multi-têtes.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Se penche sur l'utilisation de la mémoire spatiale dans les agents RL pour les tâches de navigation labyrinthe, montrant des performances améliorées avec des repères visuels, mais des résultats incohérents dans le choix du chemin.
Plonge dans une version biologiquement inspirée de l'apprentissage par renforcement, en se concentrant sur la navigation dans le labyrinthe et la mise en œuvre des neurones de stimulation.
Discute de l'assemblage des réseaux neuraux en définissant l'espace et en la populant avec des neurones, en mettant l'accent sur les défis et les stratégies pour des morphologies précises et de l'information sur le volume.
Explore l'analyse du modèle neuronal en PNL, couvrant les études d'évaluation, de sondage et d'ablation pour comprendre le comportement et l'interprétabilité du modèle.
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.
Explore les techniques de stimulation cérébrale profonde non invasives et leurs applications dans les troubles neuropsychiatriques, en mettant l'accent sur le TMS profond et le TTIS.
Explore les mathématiques des modèles de langues, couvrant la conception de l'architecture, la pré-formation et l'ajustement fin, soulignant l'importance de la pré-formation et de l'ajustement fin pour diverses tâches.