Explore la séquence des modèles de séquence, les mécanismes d'attention et leur rôle dans le traitement des limites des modèles et l'amélioration de l'interprétation.
Couvre la fonction neuronale, les modèles hiérarchiques, les comportements des taxis odorants et les paramètres de circuit disparates dans 18 diapositives.
Explore les réseaux liquides pour le contrôle d'apprentissage dans les systèmes autonomes, en mettant l'accent sur l'apprentissage de bout en bout et la performance robuste.
Explore les mathématiques des modèles de langues, couvrant la conception de l'architecture, la pré-formation et l'ajustement fin, soulignant l'importance de la pré-formation et de l'ajustement fin pour diverses tâches.
Explore les équations intégrales neurales pour modéliser les systèmes du monde réel à l'aide d'équations fonctionnelles non locales et de réseaux neuronaux profonds.
Plonge dans une version biologiquement inspirée de l'apprentissage par renforcement, en se concentrant sur la navigation dans le labyrinthe et la mise en œuvre des neurones de stimulation.