Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Fournit un aperçu des techniques d'optimisation, en se concentrant sur la descente de gradient et les propriétés des fonctions convexes dans l'apprentissage automatique.
Explore les aspects pratiques de la résolution des jeux de parité, y compris les stratégies gagnantes, les algorithmes, la complexité, le déterminisme et les approches heuristiques.
Déplacez-vous dans la construction d'ensembles robustes grâce à l'augmentation de la marge pour améliorer la défense contradictoire dans les modèles d'apprentissage automatique.
Introduit les bases de l'algèbre linéaire, du calcul et de l'optimisation dans les espaces euclidien, en mettant l'accent sur la puissance de l'optimisation en tant qu'outil de modélisation.