Explore les probabilités avancées, les variables aléatoires et les valeurs attendues, avec des exemples pratiques et des quiz pour renforcer l'apprentissage.
Explorer les distributions d'échantillonnage, les propriétés des estimateurs et les mesures statistiques pour les applications de la science des données.
Explore le phénomène Stein, présentant les avantages du biais dans les statistiques de grande dimension et la supériorité de l'estimateur James-Stein sur l'estimateur de probabilité maximale.
Se penche sur les estimateurs de vraisemblance maximale, leurs propriétés et leur comportement asymptotique, en mettant l'accent sur la cohérence et la normalité asymptotique.
Couvre les concepts fondamentaux de la statistique, y compris la théorie de l'estimation, les distributions et la loi des grands nombres, avec des exemples pratiques.