Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les modèles d'apprentissage statistique, la minimisation des risques et la minimisation empirique des risques avec des exemples d'estimateurs de probabilité maximale.
Explore les méthodes d'estimation de la distribution, les fonctions de remise en forme et l'importance de choisir le bon estimateur pour obtenir des résultats précis.
Explore une régression robuste dans l'analyse des données génomiques, en mettant l'accent sur la pondération des résidus importants pour une meilleure précision des estimations et des mesures d'évaluation de la qualité telles que NUSE et RLE.
Discute de l'estimation maximale de la probabilité pour la moyenne et la variance gaussiennes, explorant l'estimation des paramètres dans une distribution gaussienne.
S'oriente vers l'estimation optimale, le rôle de biais dans les échantillons finis, et le compromis délicat entre le biais et la variance dans l'estimation statistique.
Explore la vraisemblance du Whittle déprécié pour les séries chronologiques et les données spatiales, en mettant l'accent sur l'adaptation de la densité spectrale au parodogramme pour de meilleures prédictions et une meilleure estimation des paramètres.