Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
S'engage dans l'apprentissage continu des modèles de représentation après déploiement, soulignant les limites des réseaux neuronaux artificiels actuels.
Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.
Explore le contrôle conforme pour les robots par impédance et rigidité variable, permettant des interactions sûres et adaptatives avec l'environnement.
Couvre les exercices corrigés de l'examen 2020 dans le domaine de la robotique, y compris des sujets tels que la précision, la vitesse, les moteurs à courant continu, le rapport d'engrenage optimal, la dynamique des bras de robot, les encodeurs et la cinématique.
Explore des modèles d'apprentissage automatique pour les neurosciences, en se concentrant sur la compréhension des fonctions cérébrales et la reconnaissance des objets centraux par le biais de réseaux neuronaux convolutifs.