Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Couvre l'apprentissage non supervisé, en mettant l'accent sur la réduction de la dimensionnalité et le regroupement, en expliquant comment il aide à trouver des modèles dans les données sans étiquettes.
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Introduit des réseaux de neurones artificiels et explore diverses techniques de réduction de la dimensionnalité telles que PCA, LDA, Kernel PCA et t-SNE.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Explore Kernel Principal Component Analysis, une méthode non linéaire utilisant des noyaux pour la résolution linéaire de problèmes et la réduction des dimensions.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.