Explore des modèles stochastiques pour les communications, couvrant la moyenne, la variance, les fonctions caractéristiques, les inégalités, diverses variables aléatoires discrètes et continues, et les propriétés de différentes distributions.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Explore les probabilités avancées, les variables aléatoires et les valeurs attendues, avec des exemples pratiques et des quiz pour renforcer l'apprentissage.
Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.