Offre une introduction complète à la science des données, couvrant Python, Numpy, Pandas, Matplotlib et Scikit-learn, en mettant l'accent sur les exercices pratiques et le travail collaboratif.
Explore les caractéristiques de la turbulence, les méthodes de simulation et les défis de modélisation, fournissant des lignes directrices pour le choix et la validation des modèles de turbulence.
Explore les protocoles de recherche et de routage non structurés et structurés, en soulignant l'importance des hypothèses de structure du réseau et en introduisant l'algorithme 'Bubble Storm'.