Couvre les méthodes de recherche de racines, en se concentrant sur les techniques de bisection et de sécante, leurs implémentations et les comparaisons de leurs taux de convergence.
Explique le schéma implicite d'Euler, une méthode de résolution numérique des équations différentielles, axée sur les propriétés de stabilité et de convergence.
Couvre les méthodes numériques pour résoudre les équations différentielles et leur analyse de stabilité, en se concentrant sur le calcul des erreurs et les applications pratiques en ingénierie et en science.
Explore les compromis entre les données et le temps dans les problèmes de calcul, en mettant l'accent sur les rendements décroissants et les compromis continus.
Couvre les techniques d'intégration numérique, en se concentrant sur les formules en quadrature composite et leurs applications pour l'approximation des intégrales avec une précision améliorée.