Inférence bayésienne : Précision dans le modèle gaussien
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute de l'inférence bayésienne pour la moyenne d'une distribution gaussienne avec variance connue, couvrant la moyenne postérieure, la variance et l'estimateur MAP.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.
Introduit l'estimation bayésienne, qui couvre l'inférence classique par rapport à l'inférence bayésienne, les antécédents conjugués, les méthodes MCMC et des exemples pratiques comme l'estimation de la température et la modélisation de choix.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Couvre la méthode des moments pour estimer les paramètres et construire des intervalles de confiance basés sur des moments empiriques correspondant à des moments de distribution.