Apprentissage supervisé avec kNN : modèle de régression
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les canaux qui s'estompent dans la communication sans fil, en discutant des modèles, des performances, de la diversité et des effets d'atténuation.
Explore l'inférence bayésienne pour les variables aléatoires gaussiennes, couvrant la distribution articulaire, les pdf marginaux et le classificateur Bayes.
Explore les modèles de diffusion, en mettant l'accent sur la production d'échantillons provenant d'une distribution et l'importance de la dénigrement dans le processus.
Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.
Couvre les bases de la conception et de l'analyse expérimentales, en mettant l'accent sur les techniques statistiques comme l'ANOVA, la régression, la médiation et la modération.