Explore l'optimisation combinatoire à l'aide d'un recuit simulé pour trouver les états du sol dans les systèmes frustrés et relever les défis de satisfaire toutes les interactions simultanément.
Explore les biais implicites, la descente de gradient, la stabilité dans les algorithmes d'optimisation et les limites de généralisation dans l'apprentissage automatique.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Explore l'apprentissage automatique en chimie, se concentrant sur l'optimisation de la réaction bayésienne et le transfert du fardeau expérimental des humains aux machines.