Explore la dépendance, la corrélation et les attentes conditionnelles en matière de probabilité et de statistiques, en soulignant leur importance et leurs limites.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore la génération de nombres quantiques aléatoires, en discutant des défis et des implémentations de générer une bonne randomité à l'aide de dispositifs quantiques.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Explore les variables aléatoires conjointes, la densité conditionnelle et l'indépendance en probabilités et en statistiques.
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.