Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Explore les distributions invariantes, les états récurrents et la convergence dans les chaînes de Markov, y compris des applications pratiques telles que PageRank dans Google.
Explore la convergence de la chaîne de Markov, en mettant l'accent sur la distribution invariante, la loi des grands nombres et le calcul des récompenses moyennes.
Explore l'ergonomie et la distribution stationnaire dans les chaînes Markov, en mettant l'accent sur les propriétés de convergence et les distributions uniques.