Couvre les systèmes de coordonnées accélérés et inertiels, jacobiens, les éléments de volume, les dérivés covariants, les symboles Christoffel, le cas Lorentz et les propriétés tenseurs métriques.
Couvre les repères, les systèmes de coordonnées, les cadres et la terminologie en coordonnées, en mettant l'accent sur les angles géométriques et les vecteurs orthogonaux.
Couvre les concepts de base liés aux vecteurs, y compris leur définition, leurs opérations et leurs propriétés, ainsi que les applications à travers des exemples et le théorème de Varignon.