Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Couvre des exercices sur l'optimisation convexe, en se concentrant sur la formulation et la résolution de problèmes d'optimisation en utilisant YALMIP et des solveurs comme GUROBI et MOSEK.
Introduit l'optimisation convexe, couvrant les ensembles convexes, les concepts de solution et les méthodes numériques efficaces en optimisation mathématique.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Explore la dualité lagrangienne dans l'optimisation convexe, transformant les problèmes en formulations min-max et discutant de l'importance des solutions doubles.